2022/01/26 Jonas Adler

Adler, Jonas

Jonas Adler

Senior Research Scientist at DeepMind

Date and time: January 26th, 2022
Wednesday, at 8am PT / 11am ET / 4pm GMT / 5pm CET / 12am China (Jan 27th)

For the zoom and gather.town links, please join the One World Cryo-EM mailing list.

Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs

Cryo-electron microscopy (cryo-EM) has revolutionized experimental protein structure determination. Despite advances in high resolution reconstruction, a majority of cryo-EM experiments provide either a single state of the studied macromolecule, or a relatively small number of its conformations. This reduces the effectiveness of the technique for proteins with flexible regions, which are known to play a key role in protein function. Recent methods for capturing conformational heterogeneity in cryo-EM data model it in volume space, making recovery of continuous atomic structures challenging. Here we present a fully deep-learning-based approach using variational auto-encoders (VAEs) to recover a continuous distribution of atomic protein structures and poses directly from picked particle images and demonstrate its efficacy on realistic simulated data. We hope that methods built on this work will allow incorporation of stronger prior information about protein structure and enable better understanding of non-rigid protein structures.

2022/03/23 Sjors Scheres

Scheres, Sjors

Sjors Scheres

MRC Laboratory of Molecular Biology

Date and time: March 23rd, 2022
Wednesday, at 8am PT / 11am ET / 3pm GMT / 4pm CET / 11pm China

For the zoom and gather.town links, please join the One World Cryo-EM mailing list.

High-throughput cryo-EM structure determination of amyloids

The formation of amyloid filaments is characteristic of various degenerative diseases. Recent breakthroughs in electron cryo-microscopy (cryo-EM) have led to atomic structure determination of multiple amyloid filaments, both of filaments assembled in vitro from recombinant proteins, and of filaments extracted from diseased tissue. These observations revealed that a single protein may adopt multiple different amyloid folds, and that in vitro assembly does not necessarily lead to the same filaments as those observed in disease. In order to develop relevant model systems for disease, and ultimately to better understand the molecular mechanisms of disease, it will be important to determine which factors determine the formation of distinct amyloid folds. High-throughput cryo-EM methods will facilitate the screening of large numbers of in vitro assembly conditions. To this end, I will describe a new filament picking algorithm based on the Topaz approach, and outline image processing strategies in Relion that enable atomic structure determination of amyloids within days.