The One World Cryo-EM seminar series is a platform for discussion of algorithms, computational methods and mathematical problems in cryo-EM.
 

Online, Every Other Wednesday, at 8am PT / 11am ET/ 4pm GMT / 5pm CET / Midnight Thursday China.

Registration has changed. For zoom links and announcements, please register to our mailing list. This is a read-only mailing list (users cannot post). Please use your institution/ company email – we approve registrations manually and this helps us know who you are . You may receive an email asking you to confirm your registration, it is important that you click the link, otherwise we will not see your request.

Organizers: Joakim Andén, Dorit Hanein, Roy R. Lederman and Steven J. Ludtke


All TalksPast talksUpcoming Talks

OWCryoEM is taking a break until mid-January 2021. Please register to our mailing list for updates about the next talk in January.

Last Talk

Alberto Bartesaghi

Alberto Bartesaghi

Associate Professor of Computer Science, Biochemistry and Electrical and Computer Engineering, Duke University

CryoET – high-speed or high-resolution? BISECT tackles both

Date and time: Dec 2nd, 2020 Wednesday, at 8am PT / 11am ET / 4pm GMT / 5pm CET / Dec 3rd midnight China

For the zoom and gather.town links, please join the One World Cryo-EM mailing list.
Note that we no longer use the zoom registration system, so old zoom links may not work. The new links will be sent via the mailing list.

Tomographic reconstruction of cryo-preserved specimens followed by extraction and averaging of sub-volumes has been successfully used to determine the structure of macromolecules in their native environment.
Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. Delays introduced during mechanical navigation of the specimen and stage tilting, however, significantly slow down data collection thus limiting its practical value. Here, I present BISECT (beam image-shift electron cryo-tomography), a new protocol to accelerate tilt-series acquisition without sacrificing resolution. I also describe improvements to our constrained single particle tomography (CSPT) framework, leading to higher resolution reconstructions determined by sub-volume averaging.
For validation, we collected tilt-series from a low molecular weight target (~300kDa) using BISECT and processed them using CSPT to obtain a 3.6 Å resolution map where density for side chains is clearly resolved. These advances bring cryo-ET a step closer to becoming a high-throughput tool for in-situ structure determination at near-atomic resolution.


Other “One Worlds” (not affiliated): https://www.owprobability.org/other-worlds